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Let [an]n # N0
with an # C, an+N=an and |an |<1 for all n # N0 , be a periodic

sequence of reflection coefficients and let [Pn]n # N0
be the associated sequence of

orthogonal polynomials generated by Pn+1=zPn&a� nPn*. Furthermore let
[bn]n # N0

be an asymptotically periodic sequence of reflection coefficients which
arises by a perturbation of the sequence [an]n # N0

and thus satisfies the conditions
lim& � � bj+&N=aj for j=0, ..., N&1, and |bn |<1 for all n # N0 . Let [P� n]n # N0

generated by P� n+1=zP� n&b� nP� n* be the disturbed orthogonal polynomials. Using
the ``periodic'' polynomials [Pn]n # N0

as a comparison system we derive so-called
comparative asymptotics for the disturbed polynomials on and off the support of
the disturbed orthogonality measure, which consists essentially of several arcs of the
unit circle. As a by-product of these results we obtain asymptotically a description
of the location of the zeros of [P� n]n # N0

. Finally, a representation for the absolutely
continuous part of the disturbed orthogonality measure is derived, and it is shown
that there are at most finitely many point measures if the bn 's converge geometri-
cally fast to the an 's. � 1997 Academic Press

1. INTRODUCTION AND NOTATION

Let [Pn]n # N0
be a sequence of monic polynomials of degree �Pn=n

generated by a recurrence relation of the form

Pn+1(z)=zPn(z)&a� nPn*(z), n # N0 , P0(z)=1, (1.1)

where the reflection coefficients or Schur-parameters [an]n # N0
satisfy

an # C and |an |<1. (1.2)
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In (1.1), Pn* denotes the reciprocal polynomial of Pn defined by
Pn*(z)=znP� n(1�z).

It is well known (see e.g. [7, Sections 11ff.]) that because of (1.2) there
exists a distribution function _, i.e., a real bounded nondecreasing function
with an infinite set of points of increase, with respect to which the Pn 's are
orthogonal polynomials, that is,

|
2?

0
e&ij.Pn(ei.) d_(.)=0 for j=0, ..., n&1. (1.3)

The function

F(z) :=
1

2?c0
|

2?

0

ei.+z
ei.&z

d_(.), |z|<1, F(0)=1, (1.4)

where c0 :=1�2? �2?
0 d_(.) # R"[0], is analytic and pseudopositive (i.e.,

Re F(z)>0) on |z|<1 and is called Carathe� odory-function (abbreviated by
C-function; see e.g. again [7, Section 11]).

Further let us define the sequence of the so-called polynomials of the
second kind [0n]n # N0

by

0n+1(z)=z0n(z)+a� n0n*(z), n # N0 , 00(z)=1. (1.5)

The polynomials Pn and 0n are related by (cf. [7, p. 7])

Pn*(z) 0n(z)+Pn(z) 0n*(z)=2dn zn, n # N0 ,

where dn := `
n&1

j=0

(1&|aj |
2). (1.6)

Finally, let m # N0 and let

P (m)
n+1(z) :=zP (m)

n (z)&a� n+mP (m)
n *(z), n # N0 , P (m)

0 (z) :=1
(1.7)

0 (m)
n+1(z) :=z0 (m)

n (z)+a� n+m0 (m)
n *(z), n # N0 , 0 (m)

0 (z) :=1

be the m th associated polynomials, investigated by the first author in [15].
In this paper we first study the asymptotic behaviour of polynomials

generated by (1.1), when the reflection coefficients [a]n # N0
are periodic, i.e.,

if an+N=an for all n�n0 , n0 # N0 , where N # N is fixed. These polynomials
generated by a periodic sequence of reflection coefficients will be used then
as a ``comparison system'' for polynomials with asymptotically periodic
reflection coefficients [bn]n # N0

, i.e.,

lim
& � �

bn0+ j+&N=an0+ j for j=0, ..., N&1, (1.8)
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and, under the assumption that ��
n=0 |an&bn |<�, comparative asymp-

totics are derived in Section 3. As a byproduct we obtain the asymptotic
behaviour of the zeros of Pn and P� n . Finally, in Section 4 the orthogonality
measure _~ of the disturbed polynomials is investigated. More precisely, a
representation of the absolutely continuous part is given and it is shown
that _~ has at most a finite number of mass-points on [0, 2?]"Int(El) and
no mass-point on Int(El) if |an&bn |=O(rn), 0<r<1. For the definition of
the set El see Section 2.

In contrast to the so-called Szego� case, when the reflection coefficients
[bn]n # N0

of the perturbed orthogonal polynomials satisfy ��
n=0 |bn | 2<�

and the comparison system is Pn(z)=zn, which has been investigated in
detail, see e.g. [7, 19], not much is known about orthogonal polynomials
and perturbations of these polynomials if they are beyond the Szego� -class.
An exceptional case are polynomials orthogonal on an arc, which have
been investigated by Geronimus [4] and Akhiezer [1], and perturbations
of polynomials with constant reflection coefficients, which were studied
very recently by Golinskii, et al. [9] at about the same time as the main
results of this paper were obtained. Our approach is completely different
from that one in [9] and is heavily based on our results on orthogonal
polynomials with periodic reflection coefficients [18] and on comparative
asymptotics [16].

2. ASYMPTOTIC PROPERTIES OF ORTHOGONAL
POLYNOMIALS WITH PERIODIC

REFLECTION COEFFICIENTS

In the following we denote by [Pn]n # N0
a sequence of polynomials

which satisfies (1.1), (1.2) and the additional condition that the reflection
coefficients are periodic from a certain index onward, i.e.,

an+N=an , for all n�n0 , n0 # N0 , N # N. (2.1)

From the identity (see [15, Corollary 3.1])

2Pn+n0
=(Pn0

+P*n0
) P (n0)

n +(Pn0
&P*n0

) 0 (n0)
n , n # N0 , (2.2)

the asymptotic behaviour of the Pn 's can be obtained from the asymptotic
behaviour of the n0 th associated polynomials P (n0)

n and 0 (n0)
n , where now

the reflection coefficients [a (n0)
n ]n # N0

of the P (n0)
n 's are purely periodic, i.e.,

a(n0)
n+N=a (n0)

n for all n # N0 . Thus it sufficies to study the asymptotic
behaviour of orthogonal polynomials with purely periodic reflection
coefficients, i.e.,

n0=0 in (2.1). (2.3)
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Throughout this paper we make the following

Assumption 2.1. We exclude the case an=0 for n�n0 # N0 , because
then the orthogonal polynomials are the so-called Bernstein�Szego� polyno-
mials (cf. [2; 19, p. 31]) and are of the form Pn0+ j (z)=z jPn0

(z), j # N0 ,
thus the asymptotic behaviour is obvious. A perturbation of these reflection
coefficients leads because of the assumption (3.12) below to the well known
Szego� -theory (see e.g. [8; 19]).

In [18] we studied the orthogonality measures generated by periodic
reflection coefficients and properties of the corresponding orthogonal poly-
nomials. Let us give a short summary of those results, which are important
in what follows: Let [Pn]n # N0

be a sequence of orthogonal polynomials
generated by the periodic reflection coefficients [an]n # N0

with an+N=an

and |an |<1 for n # N0 . Then the measure _ to which the polynomials Pn ,
n # N0 , are orthogonal can be described as follows. There exist polynomials
R, W, and A with the properties, l�N,

R(z)=cR `
2l

j=1

(z&ei.j), R=R*,

and

R(.) :=e&il.R(ei.)�0 on El ,

where the zeros of R satisfy .1< } } } <.2l and .2l&.1<2?, where cR # C,
and where

El := .
l

j=1

[.2j&1 , .2j] resp. 1El :=[ei. : . # El].

W is a divisor of R and is self-reciprocal, i.e.,

R=VW and W=W*,

and A is a self-reciprocal polynomial of degree l&�V which has no zero on
1El and an odd number of zeros on each arc [ei. : . # (.2j , .2j+1)], i.e.,

A(z)=cA `
p

j=1

(z&ei!j) `
m*

j= p+1

(z&zj)
mj and A=&A*, (2.4)

where cA # C, p+�m*
p+1 mj=l&�V, !1 , ..., !p # [0, 2?]"El pairwise distinct,

zj � 1El _ [0], j= p+1, ..., m*, and [zp+1 , ..., zm*]=[1�zp+1 , ..., 1�zm*].
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Then the measure _ with respect to which the Pn 's are orthogonal can be
represented in the form

d_(.)=: d_(. ; A, W )= f (. ; A, W ) d.&2? :
p

j=1

+je&i. $(ei.&ei!j) d., (2.5)

where the absolute continuous part f (. ; A, W ) of _(.) is of the form

f (.; A, W )={}
W(ei.)

A(ei.) - R(ei.) } , . # El
(2.6)

0, otherwise,

and where $( } &ei!j) denotes the Dirac measure at the point ei!j,

+j :=
W(ei!j)

Aj (ei!j) - R(ei!j)
and Aj (z)=A(z)�(z&ei!j).

Here and in what follows we always choose that branch of - R which is
analytic on C"1El and satisfies (compare [17, (2.1)])

sgn - R(ei.)=(&1) j e
i l

2
.
,

(2.7)
. # (.2 j , .2 j+1), j=1, ..., l, .2l+1 :=.1+2?.

It is crucial in what follows that the C-function F( } ; A, W ), associated
by (1.4) with the distribution _(. ; A, W), exists not only on |z|<1 but
also on C"(1El _ [ei!1, ..., ei!p]) and has the representation

F (z ; A, W)=
V(z) B(z)+- R(z)

V(z) A(z)
, z # C"(1El _ [ei!1, ..., ei!p]), (2.8)

where B :=B( } ; A, W ) is that uniquely determined self-reciprocal polyno-
mial B=B* of degree �B=�A, which interpolates the rational function
W�- R at the zeros ei!1, ..., ei!p of A and &W�- R at the zeros zp+1 , ..., zm*

of A, i.e.,

B(ei!j)=
W(ei!j)

- R(ei!j)
, j=1, ..., p

B(&)(zj)=&\ W

- R+
(&)

(zj), j= p+1, ..., m*, &=0, ..., mj&1.

Thus F( } ; A, W ) is analytic on C"(1El _ [ei!1, ..., ei!p]) and has simple
poles at the points z=ei!j, j=1, ..., p.
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Further, we showed in [18] that a sequence of (purely) periodic reflec-
tion coefficients induces so-called complex Chebyshev-polynomials on El

(abbreviated T-polynomials) TN(z)=zN+ } } } and UN&l (z)=zN&l+ } } } of
the first and second kind, respectively. These are self-reciprocal polynomials,
i.e., TN=T*N and U*N&l , which satisfy the relation

T2
N (z)&R(z) U2

N&l (z)=L2zN

with L=- 4 >N&1
j=0 (1&|aj |

2)=2 - dN<2. (2.9)

In particular we obtain for z=ei., . # [0, 2?], that

t2
N (.)&R(.) u2

N&l (.)=L2, (2.10)

where tN , uN&l , and R are real trigonometric polynomials given by

tN(.) :=e
&i N

2
.
TN(ei.), uN&l (.) :=e

&i N&l
2

.
UN&l (ei.)

(2.11)
R(.)=e&il.R(ei.).

The complex T-polynomials as well as the polynomials R, A and B can be
expressed explicitly in terms of the orthogonal and the n th associated
orthogonal polynomials as follows (cf. [18, Theorem 4.3]): For every
n # N0 there holds

RU2
N&l=

1
4 _(P (n)

N +0 (n)
N +P (n)

N *+0 (n)
N *)2&16zN `

n+N&1

j=n

(1&|aj |
2)&(2.12)

VAUN&l=
1

dn zn (PnP*n+N&Pn*Pn+N)=P*N(z)&PN(z) (2.13)

VBUN&l=
1

2dn zn (Pn*0n+N&0n*Pn+N&0n P*n+N+Pn0*n+N)

=
1
2

[(0N+0*N)&(PN+P*N)] (2.14)

TN=
1
2

(P (n)
N +0 (n)

N +P (n)
N *+0 (n)

N *). (2.15)

Finally we define for every n # N0

Qn+l (z) :=&V(z)[A(z) 0n(z)+B(z) Pn(z)], �Qn+l=n+l. (2.16)
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These polynomials Qn+l together with the Pn 's satisfy (cf. [17,
Theorem 3.9])

- R(z) Pn(z)&Qn+l (z)=O4 (zn)

- R(z) Pn*(z)&Q*n+l (z)=O(zn+1)
(2.17)

Q[*]
n+l (ei!j)=&(- R Pn)(ei!j), j=1,..., p

(Q[*]
n+l)

(&) (zj)=(- R Pn
[*])(&) (zj), j= p+1, ..., m*, &=0, ..., mj&1,

where [*] means that the equations are fulfilled both for the polynomials
Pn , Qn+l and for their reciprocal polynomials Pn* , Q*n+l . Further, by [18,
Theorem 4.2] the following relations hold for every n # N0 and & # N:

2Pn+&N(z)=Pn(z) T&N(z)+Qn+l (z) U&N&l (z)
(2.18)

2Q(n+&N)+l (z)=Qn+l (z) T&N(z)+R(z) Pn(z) U&N&l (z);

here the polynomials T&N and U&N&l are monic complex T-polynomials on
El of degree &N and &N&l, respectively. Thus these polynomials fulfill

T2
&N (z)&R(z) U2

&N&l (z)=L2
&N z&N with L&N=- 4 >&N&1

j=0 (1&|aj |
2)

(2.19)

and they can be explicitly expressed by

T&N(z)=
1

2&&1 (LzN�2)& T& \TN(z)
LzN�2 +=z&N+ } } }

(2.20)

U&N&l (z)=
1

2&&1 UN&l (z)(LzN�2)&&1 U&&1 \TN(z)
LzN�2+=z&N&l+ } } } ,

where T& and U&&1 denote the classical Chebyshev-polynomials, i.e., T&(x)=
cos(& arccos x)=2&&1x&+ } } } and U&&1(x)=sin(& arccos x)�sin arccos x=
2&&1x&&1+ } } } .

Finally, we define the following finite sets which play an essential part in
the asymptotic behaviour of the Pn 's:

N :=[z # C"1El : - R(z) Pm(z)+Qm+l (z)=0, m # [0, ..., N&1]]
(2.21)

N* :=[z # C"1El : - R(z) P*m(z)+Q*m+l (z)=0, m # [0, ..., N&1]].

322 PEHERSTORFER AND STEINBAUER



File: 640J 302608 . By:DS . Date:20:03:97 . Time:14:54 LOP8M. V8.0. Page 01:01
Codes: 2639 Signs: 1238 . Length: 45 pic 0 pts, 190 mm

Let us remark at this point that the set N* can be written as N*=
[1�z� : z # N"[0]], since R=R*. Further, as we will show in Remark 2.2
below, N is a subset of the closed unit disk [z # C: |z|�1] and N &
[z # C : |z|=1]=[ei!1, ..., ei!p], i.e., the points from N with modulus 1 are
exactly the mass-points of _(. ; A, W ) from (2.5).

As it turned out it is more natural to study asymptotics of orthonormal
polynomials instead of monic orthogonal polynomials. Thus we denote

8n(z) :=
Pn(z)

- dn

, 9n(z) :=
0n(z)

- dn

, Qn+l (z) :=
Qn+l (z)

- dn

. (2.22)

By c0 :=1�2? �2?
0 d_(. ; A, W)=1, which follows from (2.8) and (2.12)�

(2.14), and by [7, (2.7) and (4.2)] the 8n 's are orthonormal with respect
to _(. ; A, W ), i.e.,

1
2? |

2?

0
8n(ei.) 8m(ei.) d_(. ; A, W )=$n, m .

Very important for the proofs of our main results is

Lemma 2.1. Let TN , UN&l be complex T-polynomials on El and let L be
the constant from (2.9).

(a) For every closed (not necessarily bounded) set M/C"1El there
exist constants *1<L and *2>L such that

|TN(z)&- R(z) UN&l (z)|�*1
uniformly on M. (2.23)

|TN(z)+- R(z) UN&l (z)|�*2

(b) For . # El let us set

&
- R(ei.) := lim

r � 1&
- R(rei.) and +

- R(ei.) := lim
r � 1+

- R(rei.).

(2.24)

Then &
- R(ei.)=& +

- R(ei.) and

|TN(ei.)\ &
- R(ei.) UN&l (ei.)|

=|TN(ei.)\ +
- R(ei.) UN&l (ei.)|=L. (2.25)
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Proof. (a) By applying (2.18) successively &-times on - R
P(m+(&&1) N)+N\Q (m+(&&1) N+N)+l and by using (2.1) and the fact that
L=2 - dN we get for all m # [0, ..., N&1] and all & # N0

- R(z) 8*m+&N(z)\Q*(m+&N)+l (z)

=_TN(z)\- R(z) UN&l (z)
L &

&

(- R(z) 8*m(z)\Q*m+l (z)). (2.26)

Further we obtain from (2.8) and (2.16) that

- R(z) 8*m+&N(z)&Q*(m+&N)+l (z)

=V(z) A(z)(8*m+&N(z) F(z ; A, W )&9*m+&N(z)),

where the right-hand side tends to zero as & � � on |z|<1 by [14,
Theorem 2.1]. This fact together with 8*m+&N(z) � � as & � � on |z|<1
(compare [7, Theorem 21.1], (2.1), and Assumption 2.1) implies that

- R(z) 8*m+&N(z)+Q*(m+&N)+l (z) ww�
& � �

� on |z|<1,

i.e., by (2.26)

_TN(z)+- R(z) UN&l (z)
L &

&

(- R(z) 8*m(z)+Q*m+l (z)) ww�
& � �

� on |z|<1.

(2.27)

The last convergence is only possible if

}TN(z)+- R(z) UN&l (z)
L }>1 on |z|<1. (2.28)

Further, by (2.9) we have

}TN(z)+- R(z) UN&l (z)
L } } }TN(z)&- R(z) UN&l (z)

zNL }=1, (2.29)

which implies by (2.28) that

}TN(z)&- R(z) UN&l (z)
zNL }<1 on |z|<1. (2.30)
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Since R, TN , and UN&l are self-reciprocal polynomials we immediately get
an estimate which is valid outside the unit disk. Indeed, let |z|<1 and
y :=1�z� ; then by (2.30),

}TN( y)&- R( y) UN&l ( y)
L }

= }TN(z)&- R(z) UN&l (z)
zNL }<1, | y|>1. (2.31)

Now let z=ei., . � El . Then it follows by (2.9) that |TN(ei.)|>L,
UN&l (ei.){0, which gives together with (2.10), note that R(.)>0 for
. � El ,

|TN(ei.)&- R(ei.) UN&l (ei.)|{|TN(ei.)+- R(ei.) UN&l (ei.)|. (2.32)

Now recall that by (2.9),

|TN(ei.)&- R(ei.) UN&l (ei.)| } |TN(ei.)+- R(ei.) UN&l (ei.)|=L2

and that TN\- R UN&l is continuous on C"1El ; then from (2.30), (2.31),
and (2.32) it follows that

}TN(ei.)&- R(ei.) UN&l (ei.)
L }<1, . � El .

Summing up we have shown that the first estimate in (2.23) holds true
pointwise for every z # M and by (2.29) and (2.30) the second one as well.
The uniform estimates follow from the maximum-principle together with
the pointwise estimates and the fact that

lim
z � �

TN(z)&- R(z) UN&l (z)
L

=
L
2

=- dN<1.

To see the last limit relation consider for |z|>1 the identity

TN(z)&- R(z) UN&l (z)

=T*N(z)&- R*(z) U*N&l (z)

=_TN( y)&- R( y) UN&l ( y)
yN & with y :=

1
z�
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and

1
yN (TN( y)&- R( y) UN&l ( y)) } y=0

=
L2

2

(note that TN(0)+- R(0) UN&l (0)=2 by (2.12) and (2.15) and recall
(2.9)).

Part (b) follows immediately with the help of (2.10) taking into con-
sideration that R(.)�0 on El and the properties of the square-root - R,
see (2.7) (compare also [17, Remark 3.2]). K

From Lemma 2.1 there immediately follow the first asymptotic relations

Corollary 2.1. (a) Uniformly on every compact subset of C"1El we
have

lim
n � �

(- R(z) 8n(z)&Qn+l (z))=0

and

lim
n � �

(- R(z) 8n*(z)&Q*n+l (z))=0.

(b) Further

lim
n � � \Qn+l (z)

8n(z)
&- R(z)+=0 for z # C"(1El _ N)

lim
n � � \Q*n+l (z)

8n*(z)
&- R(z)+=0 for z # C"(1El _ N*).

Again both limit relations hold uniformly compact on C"(1El _ N) resp.
C"(1El _ N*).

Proof. As in (2.26) there holds for m # [0, ..., N&1] and & # N0 ,

- R(z) 8m+&N(z)\Q(m+&N)+l (z)

=_TN(z)\- R(z) UN&l (z)
L &

&

(- R(z) 8m(z)\Qm+l (z)). (2.33)

Now part (a) immediately follows from (2.26), (2.33), and Lemma 2.1.
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(b) Let us write for all z # C"1El , m # [0, ..., N&1] and & # N0 :

- R(z)&
Q(m+&N)+l (z)

8m+&N(z)

=
- R(z) 8m+&N(z)&Q(m+&N)+l (z)

8m+&N(z)

=
2 } - R(z)(- R(z) 8m+&N(z)&Q(m+&N)+l (z))

(- R(z) 8m+&N(z)&Q(m+&N)+l (z))+(- R(z) 8m+&N(z)+Q(m+&N)+l (z))

=
2 } - R(z)

1+\TN(z)+- R(z) UN&l (z)

TN(z)&- R(z) UN&l (z)+
&

- R(z) 8m(z)+Qm+l (z)

- R(z) 8m(z)&Qm+l (z)

,

where we have used (2.33) for the last identity. From (2.23) we get

|TN(z)+- R(z) UN&l (z)|

|TN(z)&- R(z) UN&l (z)|
>1 uniformly compact on z # C"1El ,

and the first assertion follows. The second convergence can be shown in the
same way. K

As usual let

Int(El) := .
l

j=1

(.2 j&1, .2 j)

be the interior of El . In what follows let for convenience for . # El

- R(ei.) denote one of the boundary values +
- R(ei.) or &

- R(ei.)

(2.34)

defined in (2.24). Then by Lemma 2.1(b),

}TN(ei.)\- R(ei.) UN&l (ei.)
L }=1, . # El ,

and, since TN and UN&l are self-reciprocal,

e
&i N

2
. TN(ei.)+- R(ei.) UN&l (ei.)

L

=_e
&i N

2
. TN(ei.)&- R(ei.) UN&l (ei.)

L & , . # El .
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Hence, for every . # El there exists a real value # :=#(.) such that

e\i#=e
&i N

2
. TN(ei.)\- R(ei.) UN&l (ei.)

L

=
tN(.)\i (&1) j

- |R(.)| uN&l (.)
L

, . # [.2j&1 , .2j] (2.35)

where the last equation follows by (2.11).
Now we can state the following theorem which gives the asymptotic

behaviour of the orthonormal polynomials 8n as n � � on the complex
plane C.

Theorem 2.1. Let m # [0, ..., N&1].

(a) Uniformly compact on C"1El it holds that

lim
& � � _28m+&N(z)&\TN(z)+- R(z) UN&l (z)

L +
&

\8m(z)+
Qm+l (z)

- R(z) +&=0

lim
& � � _28*m+&N(z)&\TN(z)+- R(z) UN&l (z)

L +
&

\8*m(z)+
Q*m+l (z)

- R(z) +&=0.

(b) Let . # El and #=#(.) be defined as in (2.35). Then for all & # N0

it holds that

8m+&N(ei.)=e
i N&

2
. _8m(ei.) cos &#+

i sin &#

- R(ei.)
Qm+l (ei.)&

8*m+&N(ei.)=e
i N&

2
. _8*m(ei.) cos &#+

i sin &#

- R(ei.)
Q*m+l (ei.)& .

Proof. For abbreviation we use the notation P[*], which means that for
P[*], P or P* can be plugged in. Part (a) follows from Lemma 2.1(a) and

28[*]
m+&N(z)=\8[*]

m+&N(z)+
Q[*]

(m+&N)+l(z)

- R(z) ++\8[*]
m+&N(z)&

Q[*]
(m+&N)+l (z)

- R(z) +
=\TN(z)+- R(z) UN&l (z)

L +
&

\8m
[*](z)+

Q[*]
m+l (z)

- R(z) +
+\TN(z)&- R(z) UN&l (z)

L +
&

\8m
[*](z)&

Q[*]
m+l (z)

- R(z) + , (2.36)

where we have used (2.26) and (2.33) for the last identity.
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(b) From (2.33) and the definition of # we get for all . # Int(El)

8m+&N(ei.)\
Q(m+&N)+l (ei.)

- R(ei.)
=e

i N&
2

.
e\i&# \8m(ei.)\

Qm+l (ei.)

- R(ei.) + .

If we add these equations (where we use first the positive and then the
negative sign), we get the representation of 8m+&N stated in the theorem on
the interior of 1El . By reasons of continuity the assertion follows also for
the boundary-points of 1El (compare also the proof of Corollary 2.2
below).

In an analog way one shows the representation of 8*m+&N . K

Remark 2.1. (a) From Theorem 2.1 and Lemma 2.1 we see that in
contrast to the Szego� -class, both the orthonormal polynomials 8n and the
reciprocal polynomials 8n* tend to infinity as n � � on C"1El except at the
finite points from N resp. N*, defined in (2.21). For these points we
immediately get from (2.36)

28m+&N(z)=\TN(z)&- R(z) UN&l (z)
L +

&

\8m(z)&
Qm+l (z)

- R(z) + , z # N

28*m+&N(z)=\TN(z)&- R(z) UN&l (z)
L +

&

\8*m(z)&
Q*m+l (z)

- R(z) + , z # N*.

(2.37)

Thus by (2.23) the orthonormal polynomials and their reciprocal polynomials
converge geometrically fast to zero on the finite sets N resp. N*.

(b) Let now K and K* be arbitrary compact subsets of C"(1El _ N)
and of C"(1El _ N*), respectively. Then by (2.36) and (2.23) there exists a
positive value c>0 and an index n0 such that for all n�n0 the following
estimates hold:

|8n(z)|�c for all z # K and |8n*(z)|�c for all z # K*.

In the case of ``periodic'' orthogonal polynomials much more can be said
on the location of the zeros than to lie in |z|<1, which is known by the
general theory (cf. [7, Theorem 9.1]). In order to be able to state our result
we need the following notation.

Notation. Let z # C and let M/C. Then, as usual, we define

d(z, M) :=inf[ |z& y| : y # M].
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Theorem 2.2. Let zj, n , j=1, ..., n, n # N0 , be the zeros of 8n . Then
for every $ # (0, 1) there is a n0 # N such that for all n�n0 sup1� j�n

d(zj, n , 1El _ N)<$. Moreover this implies that all accumulation points of
the set �n # N [z1, n , ..., zn, n] belong to 1El _ N.

Proof. The assertion immediately follows from Remark 2.1(b). K

Let us now give some estimates of the ``periodic'' orthonormal polyno-
mials on the arcs 1El .

Corollary 2.2. Let E be a closed subset of Int(El). Then there exist
constants k(E) and K(E), which are independent of n, such that for n�n0

0<k(E)�|8n(ei.)|�K(E)<� on E. (2.38)

Further there exist constants : and ;, again independent of n, such that for
every n # N0 ,

0<
1

:+n;
�|8n(ei.)|�:+n;<� on El . (2.39)

There hold analog estimates as in (2.38) and (2.39) for the polynomials of the
second kind 9n .

Proof. First let us recall that the 9n 's, defined as in (2.22), can be con-
sidered to be orthonormal polynomials generated by the periodic reflection
coefficients [&an]n # N0

and all of our already proven results about the
polynomials 8n hold true for the 9n 's. To see this, one only has to
exchange the parts of the P's and 0's in the representations (2.12)�(2.15).
Note that especially the polynomials R, TN , UN&l , and hence the set El

remain, because of their symmetrical representation, the same.
By (1.6) and (2.22) there holds for all . # [0, 2?]

1
2e&in.(8n*(ei.) 9n(ei.)+8n(ei.) 9 n*(ei.))=Re[8n(ei.) 9n(ei.)]=1

and thus

|8n(ei.)| } |9n(ei.)|�1. (2.40)

From the representations in Theorem 2.1(b) one obtains the uniform
boundedness of the 8n 's and 9n 's on E and together with (2.40) the asser-
tion (2.38) follows.
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In order to see the estimates in (2.39) note that in the same way as in
(2.26) we get from (2.18) that

- R 8*m+&N\Q*(m+&N)+l=
T&N\- R U&N&l

L&N
(- R 8*m\Q*m+l)

for all m # [0, ..., N&1] and & # N, where L&N=2 - d&N=L&�2&&1. Thus we
have for . # El , recall (2.26),

e
i N&

2
.
e\i&#=\TN(ei.)\- R(ei.) UN&l (ei.)

L +
&

=2&&1 T&N(ei.)\- R(ei.) U&N&l (ei.)
L& .

Hence we can write for . # El ,

} i sin &#

- R(ei.) }=
1
2 }

ei&#&e&i&#

- R(ei.) }=
2&&1

L& |U&N&l (ei.)|� }UN&l (ei.)
L } } &,

where for the last estimate we have used the representation (2.20) and the
fact that |U&&1(x)|�& for x # [&1, +1]. Now the inequalities in (2.39)
follow from Theorem 2.1(b) and (2.40). K

At the end of this section we prove the remarks we stated after (2.21)
concerning the sets N and N*.

Remark 2.2. (a)

N & [z # C: |z|>1]=< and N* & [z # C: |z|<1]=<.

(b)

(N & [z # C: |z|=1])=(N* & [z # C: |z|=1])=[ei!1, ..., ei!p]

and further

N�[z # C : P (m)
N (z)=0 (m)

N (z), m # [0, ..., N&1]] _ [ei!1, ..., ei!p]. (2.41)

Proof. (a) By [7, p. 42] and [8, formula (1.12$)] we have for all
n # N0

|8n(z)|�
- |z| 2&1

|z|
for |z|>1 and |8n*(z)|�- 1&|z| 2 for |z|<1.

(2.42)
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Since the 8n tend to zero on N and the 8n* tend to zero on N*, by
Remark 2.1(a) it follows from (2.42) that N is a subset of the closed unit
disk and N* contains no points of |z|<1 (where the last fact could have
been obtained also from (2.27) in the proof of Lemma 2.1).

(b) Let us first recall that N & [z # C: |z|=1]=N* & [z # C:
|z|=1], as we mentioned in the lines after (2.21). Let now z0 # N with
|z0 |=1; then we show that z0=ei!j for a j # [1, ..., p], where the ei!j 's are
those simple zeros of A at which a mass-point of d_(. ; A, W ) occurs, i.e.,
!j # supp(_(. ; A, W )) and !j � El ; see (2.4). Indeed, suppose that z0=ei.0

and .0 � supp(_(. ; A, W )). Then by [16, Lemma 3.1(d)], 8n(z0) � � as
n � �, which contradicts (2.37).

On the other hand we know from [17, Theorem 2.2 resp. Theorem 3.9]
that at those points !1 , ..., !p where point-masses of d_(. ; A, W ) appear
there holds

- R(ei!j) 8n(ei!j)+Qm+l (ei!j)=0 for j=1, ..., p,

i.e., ei!j # N.
To see (2.41) note that by (2.18) we have

RP2
m+N&Q2

(m+N)+l=
1
4L2zN(RP2

m&Q2
m+l), m # [0, ..., N&1],

and hence from [17, Theorem 2.2] and [18, Corollary 4.2] it follows that

(- R Pm&Qm+l)(- RPm+Qm+l)=
2dmzm

UN&l
VA(P (m)

N &0 (m)
N ).

Since (- R Pm&Qm+l)�zm vanishes at all zeros zp+1, ..., zm* of A according
to their multiplicity by (2.17) and since V and UN&l have all their zeros on
1El (compare [18, Theorem 3.1(c)]), the assertion follows. K

3. ASYMPTOTIC PROPERTIES OF ORTHOGONAL
POLYNOMIALS WITH ASYMPTOTICALLY
PERIODIC REFLECTION COEFFICIENTS

Throughout this section let the sequence of reflection coefficients
[an]n # N0

be such that

an+N=an for n # N0 and |aj |<1 for j=0, ..., N&1, N # N fixed,
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that is, [an]n # N0
is purely periodic, and let [bn]n # N0

be a sequence which
is asymptotically periodic, i.e., which satisfies

lim
& � �

bj+&N=aj for j=0, ..., N&1 and |bn |<1 for n # N0 . (3.1)

By [P� n]n # N0
we denote the sequence of orthogonal polynomials generated

by the recurrence relation

P� n+1(z)=zP� n(z)&b� nP� n*(z), n # N0 , P� 0(z)=1 (3.2)

and 0� n denotes the monic polynomial of the second kind of P� n . As before,
[Pn]n # N0

denotes the sequence of polynomials generated by the periodic
reflection coefficients [an]n # N0

by (1.1).
In what follows we study the asymptotic behaviour of the polynomials

8� n , normed by

8� n(z) :=
P� n(z)

- dn

and 9� n(z) :=
0� n(z)

- dn

, (3.3)

where the dn 's are given as in (1.6). Notice that in general the 8� n 's are not
orthonormal polynomials, but the polynomials 8� n and 8n , defined as in
(2.22), have the same leading coefficient.

As already mentioned, we use the polynomials 8n , n # N0 , whose
asymptotic behaviour we know from our results of Section 2, as ``com-
parison system'' to study asymptotic properties of the 8� n 's.

3.1. Asymptotic Properties on C"1El

Some of the statements of this section will be proved by applying results
we derived in [16], where we studied comparative asymptotics of
orthogonal polynomials with perturbed reflection coefficients and obtained
results on |z|<1 and under certain additional assumptions also on arcs of
the unit circumference |z|=1. Because of the ``periodicity'' of the com-
parison system we now will be able to expand these results on the whole
complex plane.

In order to be able to apply our results from [16] let us mention that
from Theorem 2.1(a) and (2.23) one can derive that

1
|8n*(z)| 2 :

n

&=0

|8&*(z)| 2 is uniformly bounded on K*, (3.4)

where K* is a compact subset of C"(1El _ N*), i.e., there exists an integer
n0=n0(K*) and a constant c=c(K*) such that the above expression is
less than c(K*) for all n�n0(K*) and for all z # K*.
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Henceforth, we will make essential use of the so-called n th functions of
the second kind (introduced and investigated in detail by the first author
in [14] and then by the authors in [16]), which are defined as

Gn(z ; A, W ) :=
1
zn (8n(z) F(z ; A, W )+9n(z))

Hn(z ; A, W ) :=
1

zn+1 (8n*(z) F(z ; A, W )&9 n*(z))

for z # C"[ei!1, ..., ei!p] and V(z){0 (3.5)

where F(ei. ; A, W) :=limr � 1& F(rei. ; A, W ) for . # El . Here we have used
the same notation as in Section 2.

Note that the functions Gn and Hn have simple poles at ei!1, ..., ei!p and
poles of order 1

2 at those boundary-points ei.j of 1El where V(ei.j)=0. By
these definitions we immediately get that

Gn(z ; A, W )=&
1

zn+1 Hn(1�z� ; A, W), z # C"(1El _ [ei!1, ..., ei!p]). (3.6)

If one considers (2.8), (2.16), (2.26), and (2.33), the following explicit
representations can be obtained, m # N0 and & # N,

Gm+&N(z ; A, W)=
1

zm+&NV(z) A(z) \
TN(z)&- R(z) UN&l (z)

L +
&

_(- R(z) 8m(z)&Qm+l (z)) (3.7)

Hm+&N(z ; A, W)=
1

zm+&N+1V(z) A(z) \
TN(z)&- R(z) UN&l (z)

L +
&

_(- R(z) 8*m(z)&Q*m+l (z)).

Hence, Gn and Hn converge to zero uniformly compact and geometrically
fast on C"(1El _ [ei!1, ..., ei!p]) by (2.17) and (2.23) resp. (2.30). Further we
get from [16, (1.34) and (1.35)] and (3.6) that for all n # N0 ,

|Hn(z ; A, W )|�|Gn(z ; A, W )| for |z|<1

|Hn(z ; A, W )|=|Gn(z ; A, W )| for z=ei. and . � El (3.8)

|Hn(z ; A, W )|�|Gn(z ; A, W )| for |z|>1.
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For some of our proofs we will also need the following well-known facts
(cf. e.g. [8, (1.7)])

|8n(z)|�|8n*(z)| for |z|<1

|8n(z)|=|8n*(z)| for z=ei. and . # [0, 2?] (3.9)

|8n(z)|�|8n*(z)| for |z|>1.

Further, considering the representations in (3.7) and (2.36) one obtains by
using (2.9), (2.17), (2.23), and (2.30) that the functions

8n
[*](z) Gn(z ; A, W) and 8n

[*](z) Hn(z ; A, W ) (3.10)

are uniformly bounded on every compact subset of C"(1El _ [ei!1, ..., ei!p]),
where again 8n

[*] means either 8n or 8n*.
Finally let us mention that from (1.6) and (2.22) it follows that

8n*(z) Gn(z ; A, W)&z8n(z) Hn(z ; A, W )=2,

for z # C"[ei!1, ..., ei!p] and V(z){0. (3.11)

The next theorem is essential in order to obtain comparative
asymptotics.

Theorem 3.1. Let the polynomials 8n , 8� n and the functions of the
second kind Gn , Hn be given as above. In addition to (3.1) we assume that

:
�

n=0

|an&bn |<�. (3.12)

Then there exists an analytic function 2 on C"(1El _ [ei!1, ..., ei!p]) such that

lim
n � �

(8� n*(z) Gn(z ; A, W )&z8� n(z) Hn(z ; A, W ))=2(z) (3.13)

uniformly on every closed (not necessarily bounded) subset of C"(1El _
[ei!1, ..., ei!p]).

Proof. Let K be an arbitrary compact subset of C"(1El _
[ei!1, ..., ei!p]). We will show that

8� n*(z) Gn(z ; A, W) and z8� n(z) Hn(z ; A, W) are uniformly bounded on K.

(3.14)
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By

|z8� n(z) Hn(z ; A, W )|= }8� n* \1
z� + Gn \1

z�
; A, W+ } ,

which follows from (3.6), and by (3.8), (3.9) it sufficies to show only the
uniform boundedness of 8� n*Gn( } ; A, W ) on KI :=[z # C: z # K and
|z|�1]. From [16, Lemma 2.1(c)] one can derive that

}8
� n*(z)

8n*(z) }�c1+c2 :
n&1

&=0

|a&&b& | {( |8 (&)*n&&(z)|+|9 (&)*n&&(z)| ) }8&*(z)
8n*(z) }=

_}8
� &*(z)

8&*(z) } uniformly on KI

(note that the 8&*'s are bounded away from zero on KI), where c1 and c2

are positive constants and where

8 (&)
n&& :=

P(&)
n&&

- d (&)
n&&

, 9 (&)
n&& :=

0 (&)
n&&

- d (&)
n&&

, with d (&)
n&& := `

n&1

j=&

(1&|aj |
2).

Now recall that the reflection coefficients [an+&]n # N0
of the P (&)

n 's are
periodic and that by (2.12) and (2.15) the an+& 's generate the same polyno-
mials R, TN , UN&l and the same set El as the original reflection coefficients
[an]n # N0

. Hence there hold analog representations as in (2.36) for the
8(&)

n&& 's and 9 (&)
n&& 's (for the 9 (&)

n&& 's compare the proof of Corollary 2.2).
Since 8 (&)

m =8 (&+N)
m and 9 (&)

m =9 (&+N)
m the uniform boundedness on KI of

the [ } } } ]-term in the above sum can be derived by Theorem 2.1(a) and
(2.9). Hence, there exists a positive constant c3 such that uniformly on KI ,

}8
� n*(z)

8n*(z) }�c1+c3 :
n&1

&=0

|a&&b& | } }8
� &*(z)

8&*(z) } .
From (3.12) and Gronwall's inequality (see e.g. [16, (1.37)]) we obtain the
uniform boundedness of the sequence [8� n* �8n*] on KI .

Now we can write

|8� n*(z) Gn(z ; A, W )|= }8
� n*(z)

8n*(z) } } |8n*(z) Gn(z ; A, W )|

and the uniform boundedness of the functions 8� n*Gn( } ; A, W ) on KI

follows from (3.10). Thus we have shown (3.14).
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Because of (3.14) the functions

2n(z) :=8� n*(z) Gn(z ; A, W )&z8� n(z) Hn(z ; A, W ), n # N0 ,

are uniformly bounded on K and they are further analytic on
C"(1El _ [ei!1, ..., ei!p]). From [16, Theorem 2.2], note (3.4), we know that

lim
n � �

2n(z)=: 2(z) uniformly on |z|�r<1.

Now we can apply Vitali's theorem on K and (3.13) follows on every com-
pact subset of C"(1El _ [ei!1, ..., ei!p]). From (3.6) we see that

2n(z)=2n \1
z� + , (3.15)

hence (3.13) even holds on every closed, not necessarily bounded, subset of
C"(1El _ [ei!1, ..., ei!p]). K

Let us point out that the periodicity of the reflection coefficients of the
comparison system implies that the limit relation (3.13) holds even on
C"(1El _ [ei!1, ..., ei!p]) and not only on |z|�r<1 as in the general case
(see [16, Theorem 2.2]).

The next theorem shows how the undisturbed ``periodic'' and the dis-
turbed ``asymptotically periodic'' polynomials are asymptotically related to
each other.

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled and let the
function 2(z) be given as in (3.13). Then

lim
n � � \8� n*(z)

8n*(z)
&

1
2

2(z)+=0 on C"(1El _ N*) (3.16)

lim
n � � \8� n(z)

8n(z)
&

1
2

2(z)+=0 on C"(1El _ N), (3.17)

where both convergences hold uniformly compact on C"(1El _ N*) resp.
C"(1El _ N).

Proof. Let K* be a compact subset of C"(1El _ N*). Then by
Remark 2.1(b) the 8n*'s are uniformly bounded away from zero on K*
from a certain index n0 onward. We will show that

8� n*(z)
8n*(z)

is uniformly bounded on K* (for n�n0). (3.18)
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In the proof of Theorem 3.1 we have already shown that (3.18) holds on
K* & [z # C: |z|�1] (note that by Remark 2.2 the ei!j, j=1, ..., p, are
exactly that points in N* with modulus 1). Let now Ko* :=
K* & [z # C: |z|�1]; then by (3.9),

|z8� n(z) Hn(z ; A, W )|

�|z8� n*(z) Hn(z ; A, W)|

= }8
� n*(z)

8n*(z) } }
8n*(z)
8n(z) } |z8n(z) Hn(z ; A, W )| on Ko*. (3.19)

Let us note that for all n # N there holds

|z8n(z) Hn(z ; A, W )|�1 on Ko*. (3.20)

Indeed, assume the opposite |z08&0
(z0) H&0

(z0 ; A, W )|<1 for a fixed
&0 # N and z0 # Ko*, then we have by (3.8) and (3.9)

|8*&0
(z0) G&0

(z0 ; A, W )&z0 8&0
(z0) H&0

(z0 ; A, W)|

�2 |z08&0
(z0) H&0

(z0 ; A, W )|<2,

which contradicts (3.11). Now the uniform boundedness of the sequence
[8� n* �8n*] on Ko* follows from (3.19), (3.14) and (3.20), where one has to
consider the fact that by Theorem 2.1(a) the 8n* �8n 's are uniformly
bounded away from zero on Ko* from a certain index onward. Thus we
have shown (3.18).

By (3.4) and [16, Theorem 2.2] the limit-relation (3.16) holds uniformly
on |z|�r<1 and by (3.18) and Vitali's theorem the uniform convergence
on compact subsets of C"(1El _ N*) follows.

In order to see (3.17) note that for every z # C"(1El _ N _ [0]) we have
by (3.15) and the definition of the reciprocal polynomials

8� n(z)
8n(z)

&
1
2

2(z)=
8� n* \1

z� +
8n* \1

z� +
&

1
2

2 \1
z� + . (3.21)

Now 1�z� # C"(1El _ N*) and the assertion follows from (3.16) on every
compact subset of C"(1El _ N _ [0]). If 0 � N then we can write

|8� n(z) Gn(z ; A, W )|= }8
� n(z)

8n(z) } }
8n(z)
8n*(z) } |8n*(z) Gn(z ; A, W)|,
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which implies the uniform boundedness of the sequence [8� n�8n] in a
neighbourhood of z=0 (compare the proof of (3.18) above). In this case
the convergence on C"(1El _ N _ [0]) and Vitali's theorem give the
uniform convergence on compact subsets of C"(1El _ N). K

Remark 3.1. From (3.21) we see that the convergence in (3.17) even
holds on closed, not necessarily bounded, subsets of C"(1El _ N). The same
holds true for (3.16) and every closed subset of C"(1El _ N*) if 0 � N.

Let us now define the set Z2 by the zeros of the function 2, i.e.,

Z2 :=[z # C: 2(z)=0]. (3.22)

Then Z2 has the following fundamental properties.

Remark 3.2. In [16, Lemma 2.2] we have shown that the function 2 has
no zeros on |z|<1 and thus by (3.15) 2 cannot vanish on |z|>1, too. Hence,
Z2 /[z # C: |z|=1] and, since 2 is analytic and not identically zero on
C"(1El _ [ei!1, ..., ei!p]),

Z2"[ei. : . # M] is finite

for every compact subset M of [0, 2?] with El _ [!1 , ..., !p]/Int(M). Thus
Z2 is at most a countable set. Further we claim that

[ei. : . # supp(_~ )"El]�Z2 _ [ei!1, ..., ei!p],

where _~ denotes the orthogonality measure of the 8� n 's. Indeed, by using the
same methods as in the proof of [9, Theorem 3] we get that supp(_~ )"El con-
sists of at most countable-many mass-points and thus by [10, (7) and (11)]
��

n=0 |8� n*(ei�)| 2<� for all � # supp(_~ )"El . This last convergence is only
possible if 2(ei�)=0 or � # [!1 , ..., !p], because the other case, i.e.,
|2(ei�)|>0 and � � [!1 , ..., !p], yields by Theorem 3.2 that

|8� n*(ei�)|� 1
4|2(ei�)| } |8n*(ei�)|

for all n�n0 , which means that 8� n*(ei�) ww�n � � � by Theorem 2.1 and
Remark 2.2.

The following theorem says that the zeros of the perturbed orthogonal
polynomials 8� n behave in the same way as the zeros of the undisturbed
orthogonal polynomials 8n , described in Theorem 2.2.

Theorem 3.3. Let the assumptions of Theorem 3.1 be fulfilled. Let z~ j, n ,
j=1, ..., n, n # N0 , be the zeros of 8� n . Then for every $ # (0, 1) there is a
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n0 # N such that for all n�n0 sup1� j�n d(z~ j, n , 1El _ N _ Z2)<$, where
Z2 �[z # C: |z|=1] and Z2 is at most countable. Moreover this implies that
all accumulation points of the set �n # N [z~ 1, n , ..., z~ n, n] belong to
1El _ N _ Z2 .

Proof. From Theorem 2.1(a) and Theorem 3.2 we get the asymptotical
behaviour of the perturbed polynomials 8� n . Now the assertions follow
from Theorem 2.2 and Remark 3.2. K

Let us mention that the location resp. the asymptotically distribution of
the zeros of orthogonal polynomials whose reflection coefficients [bn]n # N0

are in the Szego� -class, i.e., satisfy the condition ��
n=0 |bn | 2<� and thus

are not of the type considered here, has been studied in [6, 11, 12].

3.2. Asymptotic Properties on 1El

Let us recall that by our notation (2.34), - R(ei.) denotes one of the
boundary values &

- R(ei.) or +
- R(ei.).

By Corollary 2.2 the polynomials 8n and 9n are uniformly bounded on
every compact subset E of Int(El). The following lemma gives the uniform
boundedness of 8� n and 9� n on E and is important for the following proofs.

Lemma 3.1. Let the assumption (3.12) be fulfilled. Then the polynomials
8� n and 9� n are uniformly bounded away from zero and from infinity on every
compact subset E of Int(El).

Proof. The uniform boundedness from infinity follows from [16,
Proposition 3.1] and Corollary 2.2, and the uniform boundedness from
zero can be obtained from an analog property as given in (2.40), which
holds as well for the polynomials 8� n and 9� n . K

Motivated by (2.9)�(2.15) let us define, n # N0 ,

R� [n] :=
1
4 _(P� (n)

N +0� (n)
N +P� (n)

N *+0� (n)
N *)2&16zN `

N&1

j=0

(1&|bn+ j |
2)& (3.23)

T� [n]
N :=

1
2

(P� (n)
N +0� (n)

N +P� (n)
N *+0� (n)

N *) (3.24)

A� [n] :=
1
dn

[P� nP� *n+N&P� n*P� n+N]=- dN [8� n8� *n+N&8� n*8� n+N] (3.25)

and

L� [n] :=- 4 >N&1
j=0 (1&|bn+ j |

2). (3.26)
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Then, as in (2.9), there holds a relation of the form

(T� [n]
N )2 (z)&R� [n](z)=(L� [n])2 zN. (3.27)

From (3.1), (2.9), (2.12), and (2.15), one immediately obtains

R� [n](z) ww�
n � �

R(z) U2
N&l (z), T� [n]

N (z) ww�
n � �

TN(z),
(3.28)

L� [n] ww�
n � �

L uniformly compact.

Next let us introduce a new sequence of monic orthogonal polynomials
[P� [n]

& ]& # N0
generated by the reflection coefficients [b� [n]

& ]& # N0
, which are

obtained by repeating periodically the N reflection coefficients bn , ...,
bn+N&1 of [P� &]& # N0

from the index n onward, i.e.,

b� [n]
j :=bj for j=0, ..., n+N&1 and b� [n]

j :=b� [n]
j&N for j�n+N.

Note that by this definition

P� &=P� [n]
& for &=0, ..., n+N. (3.29)

Finally let us define the polynomials Q� [n]
&+N , compare (2.16) resp. (2.18),

Q� [n]
&+N (z) :=2P� [n]

&+N (z)&T� [n]
N (z) P� [n]

& (z)=z&+N+ } } } , &, n # N0 . (3.30)

In order to get explicit representations of the perturbed polynomials 8� n

on 1El we need some preliminary considerations. Let us first state that from
[18, Corollary 4.1(a)] it follows that the undisturbed ``periodic'' poly-
nomials satisfy

Pm+(&+2) N& 1
2 (TN\- R UN&l) Pm+(&+1) N

=_TN �- R UN&l

2 &
&+1

(Pm+N& 1
2(TN\- R UN&l) Pm), m, & # N0 .

For the polynomials [P� n]n # N0
there holds

Lemma 3.2. Let m, & # N0 . Then we have

P� m+(&+2) N& 1
2 (TN\- R UN&l) P� m+(&+1) N

=_TN �- R UN&l

2 &
&+1

(P� m+N& 1
2(TN\- R UN&l) P� m)

+ :
&

j=0
_TN �- R UN&l

2 &
&& j

$m+ jN ,
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where

$n(z) :=(en(z)+T� [n]
N (z)&TN(z)) P� n+N(z)+ fn(z) P� *n+N(z)

+
zN

4
(L2&(L� [n])2) P� n(z)

en(z) :=
1
2

(P� (n+N)
N (z)+0� (n+N)

N (z)&P� (n)
N (z)&0� (n)

N (z))

fn(z) :=
1
2

(P� (n+N)
N (z)&0� (n+N)

N (z)&P� (n)
N (z)+0� (n)

N (z)).

Proof. By the above definitions (3.23)�(3.30) we can write

Q� [m]
m+N (z)=2P� m+N(z)&T� [m]

N (z) P� m(z)

Q� [m]
m+2N (z)=2P� [m]

m+2N (z)&T� [m]
N (z) P� m+N (z).

Thus we have the representations

2P� m+N=T� [m]
N P� m+Q� [m]

m+N

2P� m+2N=T� [m+N]
N P� m+N+Q� [m+N]

m+2N

2Q� [m]
m+2N=T� [m]

N Q� [m]
m+N+R� [m]P� m

and we obtain

2P� m+2N=T� [m+N]
N P� m+N+Q� [m]

m+2N+(Q� [m+N]
m+2N &Q� [m]

m+2N)

=2TNP� m+N&
L2zN

2
P� m

+_(Q� [m+N]
m+2N &Q� [m]

m+2N)+(T� [m+N]
N +T� [m]

N &2TN) P� m+N

+(L2&(L� [m])2)
zN

2
P� m& .

By using the two identities

Q� [m+N]
m+2N &Q� [m]

m+2N=2(P� m+2N&P� [m]
m+2N)&(T� [m+N]

N &T� [m]
N ) P� m+N
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and (see [18, (1.15) and (1.16)])

P� m+2N&P� [m]
m+2N= 1

2[P� (m+N)
N +0� (m+N)

N &P� (m)
N &0� (m)

N ] P� m+N

+ 1
2[P� (m+N)

N &0� (m+N)
N &P� (m)

N +0� (m)
N ] P� *m+N

=emP� m+N+ fmP� *m+N

we can write

P� m+2N=TNP� m+N&
L2zN

4
P� m+_(em+T� [m]

N &TN) P� m+N

+ fmP� *m+N+
zN

4
(L2&(L� [m])2) P� m&

=TNP� m+N&
1
4

(T2
N&RU2

N&l) P� m+$m ,

i.e.,

P� m+2N& 1
2 (TN\- R UN&l) P� m+N

= 1
2 (TN �- R UN&l)(P� m+N& 1

2 (TN\- R UN&l) P� m)+$m .

From the last equation the assertion follows by iteration. K

Let us now define

3m+ jN(z) :=\ `
m+ jN&1

&=0

(1&|a& | 2)+
&1

2

$m+jN(z), m, j # N0 , (3.31)

where $m+ jN is given as in Lemma 3.2. Then there holds

Lemma 3.3. Let E be a closed subset of Int(El) and let assumption (3.12)
be fulfilled. Then

|3n(ei.)|�const } :
n+2N&1

&=n

|a&&b& | uniformly on E.

Proof. By the normalization-factor in (3.31) and by (2.9), (3.3) we have

3n=
1
2 _L(en+T� [n]

N &TN) 8� n+N+Lfn8� *n+N+
zN

2
(L2&(L� [n])2) 8� n &.
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From the recurrence-relation (3.2) one can obtain by an induction
argument that for all j # N0 ,

|P� (n+N)
N (ei.)&P� (n)

N (ei.)|
|0� (n+N)

N (ei.)&0� (n)
N (ei.)|=

�2N :
n+N&1

&=n

|b&+N&b& |

�2N :
n+2N&1

&=n

|a&&b& | uniformly on E.

The same estimates hold true for

|P� (n+N)
N *&P� (n)

N *|, |0� (n+N)
N *&0� (n)

N *|, |P� N
(n)[*]&PN

[*]| and |0� N
(n)[*]&0N

[*]|

(compare the [*]-notation in (2.36)). Further, from condition (3.12) it
follows for all n # N0 by standard analysis that

} `
n+N&1

&=n

(1&|a& | 2)& `
n+N&1

&=n

(1&|b& | 2) }�const } :
n+N&1

&=n

|a&&b& |.

By combining these estimates and using Lemma 3.1, the assertion can be
obtained. K

We now can give explicit representations of the perturbed orthogonal
polynomials on the arcs 1El .

Theorem 3.4. Let . # El and #=#(.) be given as in (2.35). Then there
holds for all m # N0 and & # N,

8� m+(&+1) N(ei.)=
iLe

i (&+1) N
2

.

- R(ei.) UN&l (ei.)

_\sin (&+1) # } 8� m+N(ei.)&e
i N

2
.

sin &# } 8� m(ei.)

+
4

L2 :
&&1

j=0

e
&i ( j+1) N

2
.

sin (&& j) # } 3m+ jN(ei.)+ , (3.32)

where the functions 3m+ jN are given as in (3.31).
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Proof. From Lemma 3.2 and (2.9) one obtains

2 - R UN&l

L
8� m+(&+1) N

=\8� m+(&+2) N&
TN&- R UN&l

L
8� m+(&+1) N+

&\8� m+(&+2) N&
TN+- R UN&l

L
8� m+(&+1) N+

=_TN+- R UN&l

L &
&+1

\8� m+N&
TN&- R UN&l

L
8� m+

&_TN&- R UN&l

L &
&+1

\8� m+N&
TN+- R UN&l

L
8� m +

+
4

L2 :
&&1

j=0
{_TN+- R UN&l

L &
&& j

&_TN&- R UN&l

L &
&& j

= } 3m+ jN .

If we substitute (2.35) in this equation we obtain (3.32). K

Remark 3.3. (a) From (3.32) we immediately obtain another represen-
tation of the undisturbed ``periodic'' orthonormal polynomials, compare
Theorem 2.1(b),

8m+(&+1) N(ei.)

=
iLe

i (&+1) N
2

.

- R(ei.) UN&l (ei.)

_(sin (&+1) # } 8m+N(ei.)&e
i N

2
.

sin &# } 8m(ei.)). (3.33)

(b) Concerning the representation in (3.32) let us note that (compare
the proof of Corollary 2.2)

} sin &#

- R(ei.) UN&l (ei.) }� } sin &#(.j)

- R(ei.j) UN&l (ei.j) }=
&
L

, & # N,
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where the .j 's are the boundary-points of the set El . Note that by
Corollary 2.2 and Lemma 3.1 the 8n 's and 8� n 's are uniformly bounded at the
zeros of UN&l , which are all lying in Int(El) by [18, Theorem 3.1(c)], while
this does not hold at the boundary-points of 1El .

We now suppose that (3.12) is fulfilled and define, m # [0, ..., N&1],

} (m)
1, &(.) :=

4
L2 :

&&1

j=0

e
&i ( j+1) N

2
.

e&ij#(.)3m+ jN(ei.)

(3.34)

} (m)
2, &(.) :=

4
L2 :

&&1

j=0

e
&i ( j+1) N

2
.
eij#(.)3m+ jN(ei.).

Concerning the sum in (3.32) we can write

8i
L2 :

&&1

j=0

e
&i ( j+1) N

2
.

sin (&& j) # } 3m+ jN(ei.)=ei&#} (m)
1, &(.)&e&i&#} (m)

2, &(.).

Now by Lemma 3.3 there exist functions } (m)
1 and } (m)

2 such that

} (m)
1, &(.) ww�

& � �
} (m)

1 (.) :=
4

L2 :
�

j=0

e
&i ( j+1) N

2
.
e&ij#(.)3m+ jN(ei.)

} (m)
2, &(.) ww�

& � �
} (m)

2 (.) :=
4

L2 :
�

j=0

e
&i ( j+1) N

2
.
eij#(.)3m+ jN(ei.)

uniformly compact on El and

|} (m)
s, & (.)&} (m)

s (.)|

=O \ :
�

j=m+&N

|aj&bj |+, s=1, 2, uniformly compact on El .

Finally we define on Int(El)

S (m)
1 (.) :=ei#(.)8� m+N(ei.)&e

i N
2

.
8� m(ei.)+} (m)

1 (.)
(3.35)

S (m)
2 (.) :=e&i#(.)8� m+N(ei.)&e

i N
2

.
8� m(ei.)+} (m)

2 (.).
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Then by Theorem 3.4 and the above considerations we have

Corollary 3.1. Suppose that E is a compact subset of Int(El) and let
#=#(.) be defined as in (2.35). Suppose further that assumption (3.12) is
fulfilled. Then

}UN&l (ei.)
8� m+&N(ei.)

e
i &N

2
.

&
L

2 - R(ei.)
[ei(&&1) #S (m)

1 (.)&e&i(&&1) #S (m)
2 (.)] }

=O \ :
�

j=m+(&&1) N

|aj&bj |+ (3.36)

uniformly on E.

4. THE ORTHOGONALITY MEASURE OF THE
PERTURBED POLYNOMIALS

By (3.1) there exists a measure _~ , normed by 1�2? �2?
0 d_~ (.)=1, with

respect to which the P� n 's are orthogonal, i.e.,

|
2?

0
e&ij.P� n(ei.) d_~ (.)=0 for j=0, ..., n&1. (4.1)

From [18, Theorem 4.4] one obtains, compare also (2.5), that the
``periodic'' polynomials [P� [n]

& ]& # N0
, given as in (3.29), are orthogonal with

respect to the measure

d_~ [n](.) :=f� [n](.) d.&2? :
p~ [n]

j=1

+~ [n]
j e&i. $(ei.&ei!� j

[n]
) d. (4.2)

with

f� [n](.) :={}
- R� [n](ei.)

A� [n](ei.) } , . # E� [n]
N (4.3)

0, . � E� [n]
N

where for n sufficiently large polynomials R� [n] and A� [n] are given as in
(3.23) resp. (3.25) and where

E� [n]
N :=[. # [0, 2?]: e&iN.R� [n](ei.)�0]=: .

N

j=0

[.~ [n]
2j&1 , .~ [n]

2j ], (4.4)
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i.e., the e.~ j
[n]

's, j=1, ..., 2N, are the zeros of R� [n]. Further !� [n]
j � E� [n]

N ,
j=1, ..., p~ [n], and the ei!� j

[n]
's are zeros of A� [n] on the unit circle and

+~ [n]
j :=

- R� [n](ei!� j
[n]

)

A� [n]
j (ei!� j

[n]
)

, A� [n]
j (z) :=

A� [n](z)

z&ei!� j
[n] . (4.5)

By the fact that the first n+N reflection coefficients corresponding to _~ and
_~ [n] coincide, note (3.29), it follows from [7, Theorem 4.1 resp. formula
(3.2)] that

|
2?

0
e&ij. d_~ [n](.)=|

2?

0
e&ij. d_~ (.) for j=0, ..., n+N. (4.6)

Since the sequence [_~ [n]]n # N0
is uniformly bounded (note that the _~ [n]'s

are nondecreasing and _~ [n]([0, 2?])=�2?
0 d_~ [n](.)=2?), by Helly's

theorem we can extract a subsequence [_~ [n&]]& # N0
which converges

pointwise to a limit measure (resp. distribution function) _~ [�] and there
holds

lim
& � � |

2?

0
g(.) d_~ [n&](.)=|

2?

0
g(.) d_~ [�](.) (4.7)

for every continuous function g on [0, 2?]. By applying Theorem 13.3 of
[7], it follows from (4.6) and (4.7) that

_~ [�]#_~ . (4.8)

The following theorem describes the absolute continuous part of the
orthogonality measure of the perturbed polynomials 8� n .

Theorem 4.1. Let _~ denote the orthogonality measure of the perturbed
polynomials 8� n , where we assume that (3.12) is fulfilled. Then the absolute
continuous part f� of _~ is of the form

f� (.)={}
- R(ei.)

:(.) }, . # El
(4.9)

0, . � El ,

where :(.) is a differentiable function on Int(El). Further _~ has no mass-
points on Int(El).

Proof. By (3.1) and Assumption 2.1 one can show by using the same
techniques as Golinskii et al. in the proof of [9, Theorem 3] that the set of
accumulation points of supp(_) and supp(_~ ) coincide; as in the sections before,
_ denotes the orthogonality measure of the ``periodic'' polynomials 8n .
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Hence, the absolute continuous part of _~ must vanish identically outside
El . We now show that the absolute continuous parts f� [n] of the measures
_~ [n], defined in (4.2) resp. (4.3), converge uniformly compact on Int(El)
to a function of the form (4.9) as n � �. Then the assertion follows by the
considerations, compare especially (4.7) and (4.8), at the beginning of this
section.

By applying the recurrence-relation (3.2) n-times we obtain after some
straight forward calculation

1

- dN z
n+ N

2

A� [n]

=
1

z
n+ N

2

(8� n8� *n+N&8� n*8� n+N)

=
1

z
N
2

*n \(8� *N&8� N)+ :
n&1

&=0

;&

z&+1

_[z(b� &b&+N&b&b� &+N) 8� &*8� &+N+z2(b&&b&+N) 8� &8� &+N

&(b� &&b� &+N) 8� &*8� *&+N]+ , (4.10)

where

*n= `
n&1

j=0
\1&bj b� j+N

1&|aj |
2 + , ;&=

1
1&|a& | 2 `

&

j=0
\ 1&|aj |

2

1&bjb� j+N
+ .

From (3.9), (3.12), and Lemma 3.1 it follows that the sum on the
right-hand side of the above equation converges absolutely and uniformly
compact on Int(El). By the fact that ie&i(n+N�2) .A� [n](ei.) is a real
trigonometric polynomial we have

ie
&i(n+ N

2
) .

- dN

A� [n](ei.) ww�
n � �

:~ (.) uniformly compact on Int(El),

where :~ (.) is a real differentiable function. Now recall (3.28) and the fact
that UN&l has all its zeros in Int(El) by [18, Theorem 3.1(c)]. Thus one

349ASYMPTOTIC BEHAVIOUR OF ORTHOGONAL POLYNOMIALS



File: 640J 302635 . By:DS . Date:20:03:97 . Time:14:54 LOP8M. V8.0. Page 01:01
Codes: 2546 Signs: 1666 . Length: 45 pic 0 pts, 190 mm

can obtain (compare the considerations in [18, (2.13)�(2.14)]) that :~ can
be written as

:~ (.)=: :(.) uN&l (.),

where uN&l (.) is given as in (2.11), and (4.9) follows.
Let now .0 be an arbitrary point from Int(El). By Lemma 3.1 the

8� n(ei.0)'s are bounded away from zero uniformly for all n. Thus
��

n=0 |8� n(ei.0)| 2=� and by [10, (7) and (11)] there is no mass-point at
.0 . K

Let us note that in general _~ may have an infinite number of mass-points
which accumulate in (some of) the boundary-points of El . The following
theorem shows that this is not possible if the an 's and bn 's converge
sufficiently fast to each other.

Theorem 4.2. Let _~ be the orthogonality measure of the perturbed
orthogonal polynomials and let us assume that there exists a positive value
r<1 such that

|an&bn |=O(rn). (4.11)

Then supp(_~ )"El is finite, i.e., _~ has at most a finite number of mass-points
on [0, 2?]"Int(El) and no mass-point on Int(El).

Proof. First let us recall, as already stated at the beginning of the proof
of the previous theorem, that the accumulation points of supp(_) and
supp(_~ ) coincide. In Theorem 4.1 we also have seen that there are no mass-
points of _~ in Int(El). We will show that under the assumption (4.11) the
zeros of limn � � A� [n], n # N0 , from (3.25) cannot accumulate at boundary-
points of 1El . Then taking into consideration that the mass-points of the
measures _~ [n] can only appear at points � # [0, 2?], where A� [n](ei�)=0,
the assertion follows by applying Helly's Theorem (compare the considera-
tions from the beginning of this section).

For $ # (0, 1], let

UI
$ :=[z # C: |z|�1, |z&ei.j|�$, j=1, ..., 2l]

and let

q$ := sup
z # U

I
$
}TN(z)+- R(z) UN&l (z)

L } .
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By Lemma 2.1 in conjunction with |TN+- R UN&l |=L on 1El and
the continuity of TN+- R UN&l on C"1El we have q$>1 and
lim$ � 0+ (1&$)�q2

$=1. Thus we can choose an =>0 such that

r<
1&=

q2
=

. (4.12)

For abbreviation we write in the following q instead of q= . From [16,
Lemma 2.1(c)] one obtains the following estimate uniformly on UI

= :

|8� n*(z)|
qn �c1

|8n*(z)|
qn +c2 :

n&1

&=0

|a&&b& | q& \ |8 (&)*n&&(z)|+|9 (&)*n&&(z)|
qn +

_
|8� &*(z)|

q& ;

here c1 and c2 are positive constants. With the help of Theorem 2.1,
Corollary 2.2, and the maximum principle one can show that the expres-
sions |8n* |�qn and ( |8 (&)*n&& |+|9 (&)*n&& | )�qn are uniformly bounded on UI

= (for
the boundedness of 8(&)*n&& �qn and 9 (&)*n&& �qn compare also the beginning of
the proof of Corollary 2.2). Thus from (4.11), (4.12), and Gronwall's
inequality it follows that

|8� n*(z)|
qn �c3 } exp \c4 :

�

&=0

|a&&b& | } q&+�K<� uniformly on UI
= ,

(4.13)

where c3 , c4 and K are again positive constants.
Next we show that the functions A� [n]�- dN zn+N�2, n # N0 , from (4.10)

converge uniformly on UI
= as n � � to an analytic function. The *n 's in

(4.10) are convergent and thus it sufficies to show that the sum on the
right-hand side of (4.10) is uniformly convergent on UI

= . Since [;&]& # N0
is

a bounded sequence it follows from (4.13) and (3.9) that this sum is
absolutely and uniformly bounded on UI

= by

const } :
�

&=0

|a&&b& | q2&+N

(1&=)&+1 , (4.14)

where we have used the fact that both |b� & b&+N&b&b� &+N | and |b&&b&+N |
are less than or equal to 2( |a&&b& |+|a&+N&b&+N | ) and that |z|�1&=
on UI

= . By (4.11) and (4.12) the sum in (4.14) is convergent and hence

g(z) := lim
n � �

1

- dN z
n+ N

2

A� [n](z) is analytic on UI
= . (4.15)
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From

1
zn+N�2 A� [n](z)=&

1
yn+N�2 A� [n]( y), y=1�z� ,

it follows that the limit-expression in (4.15) even exists on
U= :=[z # C: |z&ei.j|<=, j=1, ..., 2l] and that g is analytic on U= . Note
that g cannot vanish identically on U= , compare the proof of Theorem 4.1,
and thus g has at most a finite number of zeros in the interior of U= . If
g(ei.j){0 for all j=1, ..., 2l, then by the uniform convergence (4.15) on U=

the zeros of all the A� [n]'s, cannot accumulate at ei.j and the theorem is
proven by the considerations from the beginning of this proof. If g(ei.j)=0
for a j # [0, ..., 2l] then consider a fixed neighbourhood U (.j) of .j with
g(ei.){0 for . # U (.j)"[.j]. Again by the uniform convergence it follows
that for every '>0 there exists an index n0 such that all the zeros of the
A� [n]'s, n�n0 , which generate mass-points of _~ [n] and which tend to ei.j

are contained in [ei. : . # [.j&', .j+'] & U (.j)]. Hence, by (4.2), (4.8),
and Helly's theorem, _~ cannot have mass-points on U (.j)"[.j&', .j+'].
Since this holds, as mentioned, for every '>0, the assertion follows. K
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